By the end of this module, you will be able to:
In 1923, G. N. Lewis proposed a generalized definition of acid-base behavior in which acids and bases are identified by their ability to accept or to donate a pair of electrons and form a coordinate covalent bond.
A coordinate covalent bond (or dative bond) occurs when one of the atoms in the bond provides both bonding electrons. For example, a coordinate covalent bond occurs when a water molecule combines with a hydrogen ion to form a hydronium ion. A coordinate covalent bond also results when an ammonia molecule combines with a hydrogen ion to form an ammonium ion. Both of these equations are shown here.
A Lewis acid is any species (molecule or ion) that can accept a pair of electrons, and a Lewis base is any species (molecule or ion) that can donate a pair of electrons.
A Lewis acid-base reaction occurs when a base donates a pair of electrons to an acid. A Lewis acid-base adduct, a compound that contains a coordinate covalent bond between the Lewis acid and the Lewis base, is formed. The following equations illustrate the general application of the Lewis concept.
The boron atom in boron trifluoride, BF3, has only six electrons in its valence shell. Being short of the preferred octet, BF3 is a very good Lewis acid and reacts with many Lewis bases; a fluoride ion is the Lewis base in this reaction, donating one of its lone pairs:
atom in this structure has three pairs of electron dots. Outside the brackets is a superscript negative symbol. This structure is labeled below as “Acid-base adduct.”" width="879" height="334" />
In the following reaction, each of two ammonia molecules, Lewis bases, donates a pair of electrons to a silver ion, the Lewis acid:
Nonmetal oxides act as Lewis acids and react with oxide ions, Lewis bases, to form oxyanions:
have three electron dot pairs each. To the right of the S atom is a double bonded O atom which has two pairs of electron dots. This structure is labeled below as “Lewis acid.” Following a right pointing arrow is a structure in brackets that has a central S atom to which 4 O atoms are connected with single bonds above, below, to the left, and to the right. Each of the O atoms has three pairs of electron dots. Outside the brackets is a superscript 2 negative. This structure is labeled below as “Acid-base adduct.”" width="880" height="223" />
Many Lewis acid-base reactions are displacement reactions in which one Lewis base displaces another Lewis base from an acid-base adduct, or in which one Lewis acid displaces another Lewis acid:
have three electron dot pairs each. To the right of the S atom is a double bonded O atom which has two pairs of electron dots. This structure is labeled below as “Acid.” Following a right pointing arrow is a structure in brackets that has a central S atom to which 4 O atoms are connected with single bonds above, below, to the left, and to the right. Each of the O atoms has three pairs of electron dots. Outside the brackets is a superscript 2 negative. This structure is labeled below as “New adduct.”" width="880" height="525" />
The last displacement reaction shows how the reaction of a Brønsted-Lowry acid with a base fits into the Lewis concept. A Brønsted-Lowry acid such as HCl is an acid-base adduct according to the Lewis concept, and proton transfer occurs because a more stable acid-base adduct is formed. Thus, although the definitions of acids and bases in the two theories are quite different, the theories overlap considerably.
G.N. Lewis proposed a definition for acids and bases that relies on an atom’s or molecule’s ability to accept or donate electron pairs. A Lewis acid is a species that can accept an electron pair, whereas a Lewis base has an electron pair available for donation to a Lewis acid.
atom in this structure has three pairs of electron dots. Outside the brackets is a superscript negative symbol." width="650" height="209" />
have three electron dot pairs each. To the right of the S atom is a double bonded O atom which has two pairs of electron dots. Following a plus sign is an O atom which is surrounded by four electron dot pairs and has a superscript 2 negative. Following a right pointing arrow is a structure in brackets that has a central S atom to which 4 O atoms are connected with single bonds above, below, to the left, and to the right. Each of the O atoms has three pairs of electron dots. Outside the brackets is a superscript 2 negative." width="650" height="207" />
(b) First, form a symmetrical structure with the unique atom, B, as the central atom. Then include the 32e – to form the Lewis structure:
Because there are four bonds and no lone pair (unshared pair) on B, the electronic and molecular shapes are the same—both tetrahedral.
(c) The tetrahedral structure is consistent with sp 3 hybridization.
Lewis acid: any species that can accept a pair of electrons and form a coordinate covalent bond
Lewis acid-base adduct: compound or ion that contains a coordinate covalent bond between a Lewis acid and a Lewis base
Lewis base: any species that can donate a pair of electrons and form a coordinate covalent bond